论文标题

空间无穷大的准本地瞬时电荷渐近学

Quasi-local instantaneous charges asymptotics at spatial infinity

论文作者

Jezierski, Jacek, Smołka, Tomasz

论文摘要

本文旨在分析(3+1)分解中重力场的指控(保守量)的构造。该结构基于(3+1)杀杀(CYK)两种形式的共形Yano分裂。分裂导致在凯奇表面定义的电荷,这些电荷是由Weyl张量和共形杀伤载体的组成部分组合在一起的。重新审视了保守数量及其经典ADM对应物之间的关系。描述了保守量的渐近行为。对电荷进行了分析,以便特定的初始数据选择,包括鲍恩 - 约克旋转黑洞。

The article aims to analyze a construction of charges (conserved quantities) for the gravity field in the (3+1) decomposition. The construction is based on (3+1) splitting of conformal Yano--Killing (CYK) two-form. The splitting leads to charges, defined on Cauchy surface, which are combined from components of Weyl tensor and conformal Killing vector. The relations between the conserved quantities and its classical ADM counterparts are revisited. Asymptotic behavior of the conserved quantities is described. The charges are analyzed for a particular choice of initial data, among others, Bowen -- York spinning black hole.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源