论文标题
弦乐紧凑型没有肯定
Nothing is certain in string compactifications
论文作者
论文摘要
一个没有任何气泡是一个时空的不稳定,紧凑的维度崩溃了。成核之后,它以光的速度扩展,留下了“无”。我们认为,一旦超对称性损坏,在弦弦压缩中似乎没有任何腐烂,可以保护紧凑型的拓扑和动力学机制。拓扑阻塞在于一个狂热群,令人惊讶的是,即使对于SUSY兼容的自旋结构,它也会消失。作为原则的证明,我们在$ t^3 $中构建了一个明确的气泡,并在Einstein dilaton dilaton高斯 - 邦网理论中具有完全周期性(SUSY兼容)的自旋结构,该理论以某些异质和II类药量的低能极限产生。没有拓扑保护,超对称的紧凑型纯粹由Coleman-Deluccia机制稳定,该机制依赖于某些局部能量条件。在我们的示例中,非对称GB术语违反了这一点。在存在磁通的情况下,这种能量条件被修改,其违规可能与重力猜想有关。我们预计我们的技术可用于在任何设置中构建多种新的气泡,而低能量的bordism组消失了,包括$ CY_3 $的II型压缩,5个manifords上的Ads Flux Compactifications,以及7个manifolds上的M-Theory。这为猜想提供了进一步的证据,即任何非对称的量子重力真空最终都是不稳定的。
A bubble of nothing is a spacetime instability where a compact dimension collapses. After nucleation, it expands at the speed of light, leaving "nothing" behind. We argue that the topological and dynamical mechanisms which could protect a compactification against decay to nothing seem to be absent in string compactifications once supersymmetry is broken. The topological obstruction lies in a bordism group and, surprisingly, it can disappear even for a SUSY-compatible spin structure. As a proof of principle, we construct an explicit bubble of nothing for a $T^3$ with completely periodic (SUSY-compatible) spin structure in an Einstein dilaton Gauss-Bonnet theory, which arises in the low-energy limit of certain heterotic and type II flux compactifications. Without the topological protection, supersymmetric compactifications are purely stabilized by a Coleman-deLuccia mechanism, which relies on a certain local energy condition. This is violated in our example by the nonsupersymmetric GB term. In the presence of fluxes this energy condition gets modified and its violation might be related to the Weak Gravity Conjecture. We expect that our techniques can be used to construct a plethora of new bubbles of nothing in any setup where the low-energy bordism group vanishes, including type II compactifications on $CY_3$, AdS flux compactifications on 5-manifolds, and M-theory on 7-manifolds. This lends further evidence to the conjecture that any non-supersymmetric vacuum of quantum gravity is ultimately unstable.