论文标题

在随机链中动态量子相变的非常规的临界指数

Unconventional critical exponents at dynamical quantum phase transitions in a random Ising chain

论文作者

Trapin, Daniele, Halimeh, Jad C., Heyl, Markus

论文摘要

动力学量子相变(DQPTS)在非平衡实时演化过程中具有瞬态量子状态的单数时间行为。在这项工作中,我们表明,随机链中的DQPT具有非整数值且不具有平均场类型的非平凡指数的临界行为。通过精确的重新归一化组转换,我们以高精度消除了大量任何有限尺寸效应的指数。我们进一步讨论如何在当前的Rydberg Atom平台中使所考虑的动态现象可以访问。在这种情况下,我们在此类体系结构中可用的旋转配置测量统计数据中探索了DQPTS的签名。具体而言,我们研究了连续排列的旋转簇的统计数据,并观察到DQPT对相应分布的显着影响。

Dynamical quantum phase transitions (DQPTs) feature singular temporal behavior in transient quantum states during nonequilibrium real-time evolution. In this work we show that DQPTs in random Ising chains exhibit critical behavior with nontrivial exponents that are not integer valued and not of mean-field type. By means of an exact renormalization group transformation we estimate the exponents with high accuracy eliminating largely any finite-size effects. We further discuss how the considered dynamical phenomena can be made accessible in current Rydberg atom platforms. In this context we explore signatures of the DQPTs in the statistics of spin configuration measurements available in such architectures. Specifically, we study the statistics of clusters of consecutively aligned spins and observe a marked influence of the DQPT on the corresponding distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源