论文标题
大自然不会在普朗克量表上发挥骰子
Nature does not play dice at the Planck scale
论文作者
论文摘要
我们从经典的一般相对论开始,耦合到物质领域。每个配置变量及其共轭动量以及时空点也将提高到矩阵的状态[等效运算符]。这些矩阵在普朗克量表上遵守确定性的拉格朗日动态。通过将这种矩阵动力学在时间间隔内的粗糙度比普朗克时间大得多,人们将量子理论推导为低能近似。如果有足够数量的自由度纠缠在一起,则会自发定位,从而导致古典时空几何形状和古典宇宙的出现。在我们的理论中,暗能证明是一种大规模的量子引力现象。量子不确定性不是基本的,而是我们不是在普朗克量表上探测物理学的原因。
We start from classical general relativity coupled to matter fields. Each configuration variable and its conjugate momentum, as also space-time points, are raised to the status of matrices [equivalently operators]. These matrices obey a deterministic Lagrangian dynamics at the Planck scale. By coarse-graining this matrix dynamics over time intervals much larger than Planck time, one derives quantum theory as a low energy emergent approximation. If a sufficiently large number of degrees of freedom get entangled, spontaneous localisation takes place, leading to the emergence of classical space-time geometry and a classical universe. In our theory, dark energy is shown to be a large-scale quantum gravitational phenomenon. Quantum indeterminism is not fundamental, but results from our not probing physics at the Planck scale.