论文标题

单个接入点CSI室内定位的CNN-LSTM量词

A CNN-LSTM Quantifier for Single Access Point CSI Indoor Localization

论文作者

Hoang, Minh Tu, Yuen, Brosnan, Ren, Kai, Dong, Xiaodai, Lu, Tao, Westendorp, Robert, Reddy, Kishore

论文摘要

本文提出了卷积神经网络(CNN)和长期术语记忆(LSTM)量词之间的联合网络结构,用于WiFi指纹识别室内定位。与仅利用具有分类模型的空间数据的常规方法相反,我们的CNN-LSTM网络从单个路由器中提取了接收到的通道状态信息(CSI)的时空和时间特征。此外,所提出的网络构建了一个量化模型,而不是有限的分类模型,就像大多数文献工作一样,这可以估算与参考点不相同的测试点。我们分析了CSI的不稳定性,并使用综合过滤器和标准化方案展示了缓解溶液。通过在数百个测试地点进行的多个移动设备(包括手机(Nexus 5)和笔记本电脑(Intel 5300 NIC)在内的多个移动设备(包括手机(Nexus 5)和笔记本电脑(Intel 5300 NIC))进行广泛的现场实验,可以研究本地化精度。仅使用单个WiFi路由器,我们的结构以4〜m的错误的$ \ MathRM {80 \%} $的$ \ MATHRM {80 \%} $实现的平均定位错误,在同一测试环境下,其他报告的算法的表现均优于其他报告的算法。

This paper proposes a combined network structure between convolutional neural network (CNN) and long-short term memory (LSTM) quantifier for WiFi fingerprinting indoor localization. In contrast to conventional methods that utilize only spatial data with classification models, our CNN-LSTM network extracts both space and time features of the received channel state information (CSI) from a single router. Furthermore, the proposed network builds a quantification model rather than a limited classification model as in most of the literature work, which enables the estimation of testing points that are not identical to the reference points. We analyze the instability of CSI and demonstrate a mitigation solution using a comprehensive filter and normalization scheme. The localization accuracy is investigated through extensive on-site experiments with several mobile devices including mobile phone (Nexus 5) and laptop (Intel 5300 NIC) on hundreds of testing locations. Using only a single WiFi router, our structure achieves an average localization error of 2.5~m with $\mathrm{80\%}$ of the errors under 4~m, which outperforms the other reported algorithms by approximately $\mathrm{50\%}$ under the same test environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源