论文标题
基于局部随机矩阵理论的本征状热假说的检验
Test of Eigenstate Thermalization Hypothesis Based on Local Random Matrix Theory
论文作者
论文摘要
我们验证特征态热假说(ETH)对于局部相互作用的量子多体系统普遍存在。引入与相互作用的随机矩阵集合,我们从数值上获得了特征态期望值的最大波动的分布,以实现相互作用的不同实现。这种分布无法从涉及非局部相关性的常规随机矩阵理论中获得,它表明,绝大多数对局部哈密顿量和可观察物的绝大多数和可观察到的对ETH满足了ETH,而ETH呈指数较小的波动。我们的随机矩阵集合的奇迹性由于当地性而分解。
We verify that the eigenstate thermalization hypothesis (ETH) holds universally for locally interacting quantum many-body systems. Introducing random-matrix ensembles with interactions, we numerically obtain a distribution of maximum fluctuations of eigenstate expectation values for different realizations of the interactions. This distribution, which cannot be obtained from the conventional random matrix theory involving nonlocal correlations, demonstrates that an overwhelming majority of pairs of local Hamiltonians and observables satisfy the ETH with exponentially small fluctuations. The ergodicity of our random matrix ensembles breaks down due to locality.