论文标题

连续时间量子在存在二次扰动的情况下行走

Continuous-time quantum walks in the presence of a quadratic perturbation

论文作者

Candeloro, Alessandro, Razzoli, Luca, Cavazzoni, Simone, Bordone, Paolo, Paris, Matteo G. A.

论文摘要

我们解决了连续时间量子步行的属性,其中包括$ \ Mathcal {h} = l +λl^2 $的hamiltonians,是$ l $ laplacian基础图的laplacian矩阵,并且是扰动$λl^2 $由其潜在用来引入下Nearept-Neegrest-neigh-neigh-neigh-neigh-neigh-neigh-neigh-neigh-neigh-neigh-neigh-neigh-neigh-neigh-neigh-neigh-neigh-neigh-neigh-neigh-neigh-neigh hopping。我们考虑循环,完整和星形图,因为具有低/高连通性和/或对称性的范式模型。首先,我们研究了最初局部沃克的动态。然后,我们将注意力专注于仅使用Walker Dynamics的快照来估算扰动参数$λ$。我们的分析表明,循环图上的步行者在弹道上独立于扰动而传播,而在完整的和星形图上,人们观察到了扰动依赖性的复兴和强烈的定位现象。关于扰动的估计,我们确定步行者的制剂和最大化量子渔民信息的简单图。我们还评估了位置测量的性能,在某些情况下,事实证明这是最佳或几乎最佳的。除了基本的兴趣之外,我们的研究可能在设计增强算法时发现了应用。

We address the properties of continuous-time quantum walks with Hamiltonians of the form $\mathcal{H}= L + λL^2$, being $L$ the Laplacian matrix of the underlying graph and being the perturbation $λL^2$ motivated by its potential use to introduce next-nearest-neighbor hopping. We consider cycle, complete, and star graphs because paradigmatic models with low/high connectivity and/or symmetry. First, we investigate the dynamics of an initially localized walker. Then, we devote attention to estimating the perturbation parameter $λ$ using only a snapshot of the walker dynamics. Our analysis shows that a walker on a cycle graph is spreading ballistically independently of the perturbation, whereas on complete and star graphs one observes perturbation-dependent revivals and strong localization phenomena. Concerning the estimation of the perturbation, we determine the walker preparations and the simple graphs that maximize the Quantum Fisher Information. We also assess the performance of position measurement, which turns out to be optimal, or nearly optimal, in several situations of interest. Besides fundamental interest, our study may find applications in designing enhanced algorithms on graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源