论文标题

K-Hessian方程的半径向溶液的表征

A characterization of semistable radial solutions of k-Hessian equations

论文作者

Navarro, Miguel Angel, Sánchez, Justino

论文摘要

我们表征了方程式的半径向解决方案$ s_k \ left(d^2u \ right)= g(u)\; \ mbox {in} b_1 $,其中$ b_1 $是$ \ mathbb {r}^n $,$ d^2u $的单位球, $ s_k \ left(d^2u \ right)$表示$ u $的$ k $ -Hessian运营商。作者最近在[8]中引入了这类径向解决方案。这些证明是相对于[8]中给出的新的,并关注方程的结构,从而改善了一些先前的结果。

We characterize semistable radial solutions of the equation $S_k\left(D^2u\right)=g(u)\;\mbox{in } B_1$, where $B_1$ is the unit ball of $\mathbb{R}^n$, $D^2u$ is the Hessian matrix of $u,\,g$ is a positive $C^1$ nonlinearity and $S_k\left(D^2u\right)$ denotes the $k$-Hessian operator of $u$. This class of radial solutions has been recently introduced by the authors in [8]. The proofs are new relative to those given in [8] and focus on the structure of the equation directly, thereby improving some previous results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源