论文标题

双变量分形插值表面的演算

The Calculus Of Bivariate Fractal Interpolation Surfaces

论文作者

Chandra, Subhash, Abbas, Syed

论文摘要

在本文中,我们研究了双变量分形插值函数的部分积分和部分衍生物。我们还证明了混合的riemann-liouville分数积分和顺序$γ=(p,q)的衍生物; p> 0,q> 0 $,双变量分形插值功能再次是对应于某些迭代功能系统(IFS)的双变量插值功能。此外,我们讨论了双变量分形插值函数的积分变换和分数积分变换。

In this article, we investigate partial integrals and partial derivatives of bivariate fractal interpolation functions. We prove also that the mixed Riemann-Liouville fractional integral and derivative of order $γ= (p, q); p > 0,q > 0$, of bivariate fractal interpolation functions are again bivariate interpolation functions corresponding to some iterated function system (IFS). Furthermore, we discuss the integral transforms and fractional order integral transforms of the bivariate fractal interpolation functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源