论文标题
活跃涡流晶体的出现和融化
Emergence and melting of active vortex crystals
论文作者
论文摘要
从超导涡流晶格到胶体结构的二维(2D)平衡晶体的融化是一种复杂的现象,其特征是位置和定向阶的顺序丧失。尽管外部热注射通常会触发被动系统中的熔化过程,但主动物质晶体可以通过其内在的运动性和固有的非平衡应力来自组装并融化成活性流体。在最近的实验中观察到了新兴的晶体样顺序,该实验涉及游泳精子细胞,快速移动细菌,Janus胶体和胚胎组织中的悬浮液。然而,尽管在此类系统的理论描述中最近进行了进展,但尚不清楚主动结晶和熔化过程的非平衡物理学。在这里,我们使用经过实验验证的广义碳粉TU理论来建立出现并研究2D活性流体中自组织的涡流晶体的融化。我们以前所未有的规模进行流体动力学模拟,我们确定了两个截然不同的熔化场景:滞后不连续的相变和通过中间六角形阶段进行融化,这两者都可以通过自我刺激和主动应力来控制。我们的分析进一步揭示了活性涡流晶体的有趣瞬态特征,包括相反自旋极性的元稳定上层建筑。通常,这些结果突出了活性流体及其平衡对应物中结晶相之间的差异和相似性。
Melting of two-dimensional (2D) equilibrium crystals, from superconducting vortex lattices to colloidal structures, is a complex phenomenon characterized by the sequential loss of positional and orientational order. Whereas melting processes in passive systems are typically triggered by external heat injection, active matter crystals can self-assemble and melt into an active fluid by virtue of their intrinsic motility and inherent non-equilibrium stresses. Emergent crystal-like order has been observed in recent experiments on suspensions of swimming sperm cells, fast-moving bacteria, Janus colloids, and in embryonic tissues. Yet, despite recent progress in the theoretical description of such systems, the non-equilibrium physics of active crystallization and melting processes is not well understood. Here, we establish the emergence and investigate the melting of self-organized vortex crystals in 2D active fluids using an experimentally validated generalized Toner-Tu theory. Performing hydrodynamic simulations at an unprecedented scale, we identify two distinctly different melting scenarios: a hysteretic discontinuous phase transition and melting through an intermediary hexatic phase, both of which can be controlled by self-propulsion and active stresses. Our analysis further reveals intriguing transient features of active vortex crystals including meta-stable superstructures of opposite spin polarity. Generally, these results highlight the differences and similarities between crystalline phases in active fluids and their equilibrium counterparts.