论文标题
了解机器学习框架中与系统相关问题的性质:探索性研究
Understanding the Nature of System-Related Issues in Machine Learning Frameworks: An Exploratory Study
论文作者
论文摘要
现代系统是使用开发框架构建的。这些框架对最终系统的执行方式,如何管理配置,测试方式以及如何部署其部署以及在何处进行了重大影响。机器学习(ML)框架和使用它们开发的系统与传统框架有很大不同。自然,在这种框架中表现出的问题也可能有所不同 - 开发人员的行为可能解决这些问题。我们有兴趣表征与系统相关的问题---影响性能,内存和资源使用情况以及其他质量属性的问题 - 在ML框架中出现的问题,以及它们与传统框架中的属性如何不同。我们已经进行了一项中等规模的探索性研究,分析了10个流行的机器学习框架中与现实世界有关的问题。我们的发现对机器学习系统的开发产生了影响,包括某些问题类型的发生频率的差异,有关辩论和时间对问题纠正影响的观察以及开发人员专业化的差异。我们希望这项探索性研究将使开发人员能够在利用这些框架提供的工具来开发基于ML的系统时,提高他们的期望,风险计划并相应地分配资源。
Modern systems are built using development frameworks. These frameworks have a major impact on how the resulting system executes, how configurations are managed, how it is tested, and how and where it is deployed. Machine learning (ML) frameworks and the systems developed using them differ greatly from traditional frameworks. Naturally, the issues that manifest in such frameworks may differ as well---as may the behavior of developers addressing those issues. We are interested in characterizing the system-related issues---issues impacting performance, memory and resource usage, and other quality attributes---that emerge in ML frameworks, and how they differ from those in traditional frameworks. We have conducted a moderate-scale exploratory study analyzing real-world system-related issues from 10 popular machine learning frameworks. Our findings offer implications for the development of machine learning systems, including differences in the frequency of occurrence of certain issue types, observations regarding the impact of debate and time on issue correction, and differences in the specialization of developers. We hope that this exploratory study will enable developers to improve their expectations, plan for risk, and allocate resources accordingly when making use of the tools provided by these frameworks to develop ML-based systems.