论文标题

离散的贝塞尔功能并转换

Discrete Bessel functions and transform

论文作者

Uriostegui, Kenan, Wolf, Kurt Bernardo

论文摘要

我们提出了bessel函数的直接离散化$ j_n(x)$ to离散对应物$ b^{(n)} _ n(x_m)$,$ n $ integer订单$ n $ n $ integer点上的$ n $ n $ n $ integer点$ x_m \ equiv m $,我们呼吁ivest ivestect bessel bessel bessel functions。这些是由Bessel积分生成功能构建的,将圆圈的傅立叶变换限制在$ n $点上。我们表明,离散的贝塞尔函数满足了几种线性和二次关系,尤其是Graf的乘积置换公式,它们是连续函数之间众所周知关系的确切类似物。值得注意的是,这些离散的贝塞尔函数非常接近近似于$ n + | m |中连续函数的值。 <n $。对于固定的$ n $,这提供了订单和位置功能之间的$ n $点转换,$ f_n $和$ \ widetilde {f} _m $,这对于有限衰减信号的傅立叶分析非常有效。

We present a straightforward discretization of the Bessel functions $J_n(x)$ to discrete counterparts $B^{(N)}_n(x_m)$, of $N$ integer orders $n$ on $N$ integer points $x_m \equiv m$, that we call discrete Bessel functions. These are built from a Bessel integral generating function, restricting the Fourier transform over the circle to $N$ points. We show that the discrete Bessel functions satisfy several linear and quadratic relations, particularly Graf's product-displacement formulas, that are exact analogues of well-known relations between the continuous functions. It is noteworthy that these discrete Bessel functions approximate very closely the values of the continuous functions in ranges $n + |m| < N$. For fixed $N$, this provides an $N$-point transform between functions of order and of position,$f_n$ and $\widetilde{f}_m$, which is efficient for the Fourier analysis of finite decaying signals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源