论文标题

非线性分数抛物线不平等的非负溶液的存在

Existence of Nonnegative Solutions of Nonlinear Fractional Parabolic Inequalities

论文作者

Taliaferro, Steven D.

论文摘要

我们研究了非线性非本地非负溶液的存在$ u(x,t)$的非线性初始值问题\ [((\ partial_t-Δ)^αu\ geq u \ geq u^geq u^λ\ quad \ quad \ quad \ quad \ quad {in} \ quad \ text {in} \ mathbb {r}^n \ times( - \ infty,0)\] \ times \ mathbb {r},\,n \ geq1 \] \ [u = 0 \ quad \ text {in} \ mathbb {r}^n \ times( - \ infty,0),\],其中$λ,α,α,α,c_1 $和$ c_2 $和$ c_2 $与$ c_1 $ c_1 <c_1 <c_1我们使用[taliaferro,2020]中给出的分数热运算符$(\ partial_t-Δ)^α$的定义,并将我们在经典案例$α= 1 $中比较我们的结果与已知结果。

We study the existence of nontrivial nonlocal nonnegative solutions $u(x,t)$ of the nonlinear initial value problems \[ (\partial_t -Δ)^αu\geq u^λ\quad \text{in } \mathbb{R}^n \times\mathbb{R},\,n\geq 1 \] \[ u=0 \quad\text{in } \mathbb{R}^n \times(-\infty,0) \] and \[ C_1 u^λ\leq(\partial_t -Δ)^αu\leq C_2 u^λ\quad\text{in } \mathbb{R}^n \times\mathbb{R},\,n\geq1 \] \[ u=0 \quad\text{in } \mathbb{R}^n \times(-\infty,0), \] where $λ,α,C_1$, and $C_2$ are positive constants with $C_1 <C_2$. We use the definition of the fractional heat operator $(\partial_t -Δ)^α$ given in [Taliaferro, 2020] and compare our results in the classical case $α=1$ to known results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源