论文标题
平方fermion:三倍的方式和零模式的命运
Squaring the fermion: The threefold way and the fate of zero modes
论文作者
论文摘要
我们研究了稳定的骨气系统的平均场理论的拓扑特性和分类。在三个标准分类对称性中,只有时间反转代表多个玻色子系统的真实对称性,而其他两个粒子孔和手性则只是表现为有效单粒子问题对称性的约束。对于任意空间维度的间隙系统,我们建立了三个基本的不进行定理,这些定理证明了:在开放边界条件下,均衡开关,对称性预处理的量子阶段和局部的骨零模式。然后,我们介绍了一张平方的,具有内核的图地图,该地图连接了非相互作用的遗传性遗传学理论和稳定的玻色子系统,该理论是一个游乐场,可以揭示拓扑中拓扑中的作用在玻体相及其本地化的Midgap边界模式。最后,我们确定了从费尔米尼克(Fermionic)十倍分类中继承的对称类别,并揭示了非相互作用玻色子的优雅的三倍拓扑分类。我们在一维纤维晶状体和现场理论模型中说明了我们的主要发现。
We investigate topological properties and classification of mean-field theories of stable bosonic systems. Of the three standard classifying symmetries, only time-reversal represents a real symmetry of the many-boson system, while the other two, particle-hole and chiral, are simply constraints that manifest as symmetries of the effective single-particle problem. For gapped systems in arbitrary space dimension we establish three fundamental no-go theorems that prove the absence of: parity switches, symmetry-protected-topological quantum phases, and localized bosonic zero modes under open boundary conditions. We then introduce a squaring, kernel-preserving map connecting non-interacting Hermitian theories of fermions and stable boson systems, which serves as a playground to reveal the role of topology in bosonic phases and their localized midgap boundary modes. Finally, we determine the symmetry classes inherited from the fermionic tenfold-way classification, unveiling an elegant threefold-way topological classification of non-interacting bosons. We illustrate our main findings in one- and two-dimensional bosonic lattice and field-theory models.