论文标题

关于Gaver-Stehfest算法的收敛速率

On the rate of convergence of the Gaver-Stehfest algorithm

论文作者

Kuznetsov, Alexey, Miles, Justin

论文摘要

Gaver-Stehfest算法广泛用于拉普拉斯变换的数值反转。在本文中,我们对Gaver-Stehfest算法的收敛速率进行了首次严格研究。我们证明,如果目标函数在一个点附近分析,并且如果目标函数为$(2K+3)$ - times times在某个点,则它们以速率$ o(n^{ - k})$收敛,并且它们以速率$ o(n^{ - k})$收敛。

The Gaver-Stehfest algorithm is widely used for numerical inversion of Laplace transform. In this paper we provide the first rigorous study of the rate of convergence of the Gaver-Stehfest algorithm. We prove that Gaver-Stehfest approximations converge exponentially fast if the target function is analytic in a neighbourhood of a point and they converge at a rate $o(n^{-k})$ if the target function is $(2k+3)$-times differentiable at a point.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源