论文标题

超敏感性THZ纳米镜检查的探针

Probes for Ultrasensitive THz Nanoscopy

论文作者

Maissen, Curdin, Chen, Shu, Nikulina, Elizaveta, Govyadinov, Alexander, Hillenbrand, Rainer

论文摘要

Terahertz(THZ)频率的散射型扫描近场显微镜(S-SNOM)可能成为研究基本和应用兴趣的各种现象的高度有价值的工具,包括移动载体激发或2D材料或外部导体中的移动载体激发或相变。然而,应用有限的信号与噪声比受到强烈挑战。一个主要原因是标准的原子力显微镜(AFM)尖端使S-SNOM成为高度实用且快速新兴的工具,可在THZ频率下提供弱散射效率。在这里,我们报告了不同顶端直径和长度的商业和定制AFM尖端的合并实验和理论研究,以了解THZ S-SNOM中的信号形成,并提供有关尖端优化的见解。与常见的信念相反,我们发现具有较大(微米尺度)直径的AFM尖端可以将S-SNOM信号提高多个数量级,同时仍以119微米的波长提供约100 nm的空间分辨率。另一方面,利用具有尖端长度的S-SNOM信号的增加,我们在15 nm均采用了6 nm Apex半径的钨尖来取得了成功。我们通过严格的近场散射过程来解释我们的发现,并通过严格的数值建模为S-SNOM提供新的见解。我们的发现对于将THZ纳米镜检查推向其敏感性和空间分辨率的最终限制至关重要。

Scattering-type scanning near-field microscopy (s-SNOM) at terahertz (THz) frequencies could become a highly valuable tool for studying a variety of phenomena of both fundamental and applied interest, including mobile carrier excitations or phase transitions in 2D materials or exotic conductors. Applications, however, are strongly challenged by the limited signal to noise ratio. One major reason is that standard atomic force microscope (AFM) tips, which have made s-SNOM a highly practical and rapidly emerging tool, provide weak scattering efficiencies at THz frequencies. Here we report a combined experimental and theoretical study of commercial and custom-made AFM tips of different apex diameter and length, in order to understand signal formation in THz s-SNOM and to provide insights for tip optimization. Contrary to common beliefs, we find that AFM tips with large (micrometer-scale) apex diameter can enhance s-SNOM signals by more than one order of magnitude, while still offering a spatial resolution of about 100 nm at a wavelength of 119 micron. On the other hand, exploiting the increase of s-SNOM signals with tip length, we succeeded in sub-15 nm resolved THz imaging employing a tungsten tip with 6 nm apex radius. We explain our findings and provide novel insights into s-SNOM via rigorous numerical modeling of the near-field scattering process. Our findings will be of critical importance for pushing THz nanoscopy to its ultimate limits regarding sensitivity and spatial resolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源