论文标题
ATTVIZ:透明神经语言建模的自我注意力的在线探索
AttViz: Online exploration of self-attention for transparent neural language modeling
论文作者
论文摘要
神经语言模型已成为查询答案,文本分类,歧义,完成和翻译任务的主要方法。这些神经网络模型通常由数亿个参数组成,以可解释性为代价提供了最先进的性能。人类不再能够追踪和了解如何做出决策。最初针对翻译任务引入的注意机制已成功地用于其他与语言相关的任务。我们提出了Attviz,这是一种在线工具包,用于探索自我注意事项 - 与单个文本令牌相关的真实价值。我们展示了现有的深度学习管道如何产生适合ATTVIZ的输出,并以最小的努力在线提供了新颖的注意力头及其聚集。我们以新闻片段的例子说明了如何使用所提出的系统来检查并有可能更好地了解模型学到的东西(或强调)。
Neural language models are becoming the prevailing methodology for the tasks of query answering, text classification, disambiguation, completion and translation. Commonly comprised of hundreds of millions of parameters, these neural network models offer state-of-the-art performance at the cost of interpretability; humans are no longer capable of tracing and understanding how decisions are being made. The attention mechanism, introduced initially for the task of translation, has been successfully adopted for other language-related tasks. We propose AttViz, an online toolkit for exploration of self-attention---real values associated with individual text tokens. We show how existing deep learning pipelines can produce outputs suitable for AttViz, offering novel visualizations of the attention heads and their aggregations with minimal effort, online. We show on examples of news segments how the proposed system can be used to inspect and potentially better understand what a model has learned (or emphasized).