论文标题
在非结构化环境中进行定位:朝着具有Delaunay三角剖分的森林中的自主机器人
Localization in Unstructured Environments: Towards Autonomous Robots in Forests with Delaunay Triangulation
论文作者
论文摘要
自主收获和运输是森林行业的长期目标。主要挑战之一是在森林中准确定位车辆和树木。森林是非结构化的环境,很难为当前基于快速特征的位置识别算法找到一组重要地标。本文提出了一种新颖的方法,其中使用Delaunay三角形作为表示格式,将局部观察结果与一般树图匹配。我们利用基于拓扑的方法而不是基于点云的匹配方法。首先,树干位置是在森林收割机先前进行的。其次,所得的地图是Delaunay三角形的。第三,使用三角形相似性最大化进行了自主机器人的局部子束,三角形和匹配,以估计机器人的位置。我们在芬兰Lieksa的林业网站积累的数据集上测试我们的方法。总长度为2100 \,由一个工业收割机记录了带有3D激光扫描仪和固定在框架上的地理位置单元的工业收割机。我们的实验显示了12 \ CM S.T.D.在位置精度和实时数据处理中,速度不超过0.5 \,m/s。在森林操作过程中,准确性和速度限制是现实的。
Autonomous harvesting and transportation is a long-term goal of the forest industry. One of the main challenges is the accurate localization of both vehicles and trees in a forest. Forests are unstructured environments where it is difficult to find a group of significant landmarks for current fast feature-based place recognition algorithms. This paper proposes a novel approach where local observations are matched to a general tree map using the Delaunay triangularization as the representation format. Instead of point cloud based matching methods, we utilize a topology-based method. First, tree trunk positions are registered at a prior run done by a forest harvester. Second, the resulting map is Delaunay triangularized. Third, a local submap of the autonomous robot is registered, triangularized and matched using triangular similarity maximization to estimate the position of the robot. We test our method on a dataset accumulated from a forestry site at Lieksa, Finland. A total length of 2100\,m of harvester path was recorded by an industrial harvester with a 3D laser scanner and a geolocation unit fixed to the frame. Our experiments show a 12\,cm s.t.d. in the location accuracy and with real-time data processing for speeds not exceeding 0.5\,m/s. The accuracy and speed limit is realistic during forest operations.