论文标题

可逆图像重新缩放

Invertible Image Rescaling

论文作者

Xiao, Mingqing, Zheng, Shuxin, Liu, Chang, Wang, Yaolong, He, Di, Ke, Guolin, Bian, Jiang, Lin, Zhouchen, Liu, Tie-Yan

论文摘要

高分辨率的数字图像通常会降低以适合各种显示屏幕或节省存储和带宽的成本,同时进行后扫描以恢复原始分辨率或缩放图像中的详细信息。然而,由于丢失高频信息,典型的图像降尺度是一个非注射映射,这导致了逆向上尺度过程的不足问题,并提出了从降低缩小的低分辨率图像中恢复细节的巨大挑战。只需使用图像超分辨率方法进行尺寸化,就会导致恢复性能不令人满意。在这项工作中,我们建议通过从新的角度(即可逆性的双眼转变)建模降低尺度和放大过程来解决这个问题,从而在很大程度上可以减轻图像升级的不足本质。我们开发了可演化的重新缩放网(IRN),具有故意设计的框架和目标,以产生令人愉悦的低分辨率图像,同时在降尺度过程中使用指定分布后使用潜在变量捕获丢失信息的分布。这样,可以通过通过网络通过低分辨率图像成反向传递随机绘制的潜在变量来进行缩放。实验结果证明了我们的模型对现有方法的显着改善,从缩小图像对图像进行缩放重建的定量和定性评估方面。

High-resolution digital images are usually downscaled to fit various display screens or save the cost of storage and bandwidth, meanwhile the post-upscaling is adpoted to recover the original resolutions or the details in the zoom-in images. However, typical image downscaling is a non-injective mapping due to the loss of high-frequency information, which leads to the ill-posed problem of the inverse upscaling procedure and poses great challenges for recovering details from the downscaled low-resolution images. Simply upscaling with image super-resolution methods results in unsatisfactory recovering performance. In this work, we propose to solve this problem by modeling the downscaling and upscaling processes from a new perspective, i.e. an invertible bijective transformation, which can largely mitigate the ill-posed nature of image upscaling. We develop an Invertible Rescaling Net (IRN) with deliberately designed framework and objectives to produce visually-pleasing low-resolution images and meanwhile capture the distribution of the lost information using a latent variable following a specified distribution in the downscaling process. In this way, upscaling is made tractable by inversely passing a randomly-drawn latent variable with the low-resolution image through the network. Experimental results demonstrate the significant improvement of our model over existing methods in terms of both quantitative and qualitative evaluations of image upscaling reconstruction from downscaled images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源