论文标题

通过内核通过成对学习对深度学习进行模块化学习

Modularizing Deep Learning via Pairwise Learning With Kernels

论文作者

Duan, Shiyu, Yu, Shujian, Principe, Jose

论文摘要

通过重新定义层的传统概念,我们在有限宽,可训练的深度神经网络上作为特征空间中的线性模型提供了另一种视图,从而导致了内核机器的解释。然后,基于这种结构,我们提出了一个可证明的最佳模块化学习框架,用于分类,不需要模块间反向传播。这种模块化方法为深度学习的标签要求带来了新的见解:在学习隐藏模块时,它仅利用隐式成对标签(弱监督)。另一方面,当训练输出模块时,它需要全面监督,但可以达到高标签效率,只需10个随机选择的标记示例(每个班级中一个)才能使用Resnet-18骨架在CIFAR-10上实现94.88%的精度。此外,模块化训练可以实现完全模块化的深度学习工作流程,然后简化管道的设计和实现,并提高模型的可维护性和可重复性。为了展示这种模块化工作流的优势,我们描述了一种简单但可靠的方法,用于估计预训练模块的可重复使用性以及在传输学习设置中的任务转移性。实际上,它没有计算开销,它可以精确地描述了CIFAR-10的15个二进制分类任务的任务空间结构。

By redefining the conventional notions of layers, we present an alternative view on finitely wide, fully trainable deep neural networks as stacked linear models in feature spaces, leading to a kernel machine interpretation. Based on this construction, we then propose a provably optimal modular learning framework for classification that does not require between-module backpropagation. This modular approach brings new insights into the label requirement of deep learning: It leverages only implicit pairwise labels (weak supervision) when learning the hidden modules. When training the output module, on the other hand, it requires full supervision but achieves high label efficiency, needing as few as 10 randomly selected labeled examples (one from each class) to achieve 94.88% accuracy on CIFAR-10 using a ResNet-18 backbone. Moreover, modular training enables fully modularized deep learning workflows, which then simplify the design and implementation of pipelines and improve the maintainability and reusability of models. To showcase the advantages of such a modularized workflow, we describe a simple yet reliable method for estimating reusability of pre-trained modules as well as task transferability in a transfer learning setting. At practically no computation overhead, it precisely described the task space structure of 15 binary classification tasks from CIFAR-10.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源