论文标题

实时面部表达识别“在野外”,通过将3D表达与身份脱离

Real-time Facial Expression Recognition "In The Wild'' by Disentangling 3D Expression from Identity

论文作者

Koujan, Mohammad Rami, Alharbawee, Luma, Giannakakis, Giorgos, Pugeault, Nicolas, Roussos, Anastasios

论文摘要

人类情绪分析一直是许多研究的重点,尤其是在情感计算领域,对于许多应用,例如人力计算机的智能互动,压力分析,互动游戏,动画等。自动情感分析的解决方案也受益于深度学习方法的发展以及互联网上大量视觉面部数据的可用性。本文提出了一种从单个RGB图像中识别人类情感的新方法。我们构建了面部视频(\ textbf {facevid})的大规模数据集,富含面部动态,身份,表达式,外观和3D姿势变化。我们使用此数据集训练深度卷积神经网络来估计3D形态模型的表达参数,并将其与有效的后端情感分类器结合使用。我们提出的框架以每秒50帧的速度运行,并且能够稳健地估计3D表达变化的参数,并准确地识别来自野外图像的面部表情。我们提出了广泛的实验评估,该评估表明,所提出的方法在估计3D表达参数和实现识别面部图像的基本情绪方面的最新性能方面优于比较技术,并识别面部视频的压力。与当前的艺术状态相比,在面部图像中识别情感状态。

Human emotions analysis has been the focus of many studies, especially in the field of Affective Computing, and is important for many applications, e.g. human-computer intelligent interaction, stress analysis, interactive games, animations, etc. Solutions for automatic emotion analysis have also benefited from the development of deep learning approaches and the availability of vast amount of visual facial data on the internet. This paper proposes a novel method for human emotion recognition from a single RGB image. We construct a large-scale dataset of facial videos (\textbf{FaceVid}), rich in facial dynamics, identities, expressions, appearance and 3D pose variations. We use this dataset to train a deep Convolutional Neural Network for estimating expression parameters of a 3D Morphable Model and combine it with an effective back-end emotion classifier. Our proposed framework runs at 50 frames per second and is capable of robustly estimating parameters of 3D expression variation and accurately recognizing facial expressions from in-the-wild images. We present extensive experimental evaluation that shows that the proposed method outperforms the compared techniques in estimating the 3D expression parameters and achieves state-of-the-art performance in recognising the basic emotions from facial images, as well as recognising stress from facial videos. %compared to the current state of the art in emotion recognition from facial images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源