论文标题
二进制多项式功率总和在统一根部消失
Binary polynomial power sums vanishing at roots of unity
论文作者
论文摘要
令$ c_1(x),c_2(x),f_1(x),f_2(x)$是具有有理系数的多项式。除了明显的例外,多项式$ C_1(X)F_1(x)^n+C_2(x)f_2(x)f_2(x)^n $与$ n = 1,2 \ ldots $之间,最多可能有很多统一根源。我们根据学位和多项式$ c_i $和$ f_i $的学位和高度估算了这些团结根的订单。
Let $c_1(x),c_2(x),f_1(x),f_2(x)$ be polynomials with rational coefficients. With obvious exceptions, there can be at most finitely many roots of unity among the zeros of the polynomials $c_1(x)f_1(x)^n+c_2(x)f_2(x)^n$ with $n=1,2\ldots$. We estimate the orders of these roots of unity in terms of the degrees and the heights of the polynomials $c_i$ and $f_i$.