论文标题
特定于网站的在线压缩梁代码簿在mmwave车辆通信中学习
Site-specific online compressive beam codebook learning in mmWave vehicular communication
论文作者
论文摘要
毫米波(MMWave)通信是一种可行的解决方案,用于支持车辆网络中的GBPS传感器数据共享。在MMWave中使用大型天线阵列和在车辆通信中的高移动性使设计快速光束对齐解决方案的挑战。在本文中,我们提出了一个新颖的框架,该框架在基站(BS)中学习了通道角度角度(AOD)统计信息,并使用此信息有效地获取通道测量值。我们的框架集成了在线学习以进行压缩传感(CS)代码书学习,并且优化的代码簿用于基于CS的光束对齐。我们根据BS上可用的AOD统计信息来制定CS矩阵优化问题。此外,根据CS频道测量值,我们开发了在BS上更新和学习此类渠道AOD统计信息的技术。我们使用上部置信度结合(UCB)算法来学习AOD统计信息和CS矩阵。数值结果表明,所提出的框架中的CS矩阵比标准CS矩阵设计更快。仿真结果表明,与不利用任何AOD统计的标准CS解决方案相比,与详尽的光束搜索相比,所提出的梁训练技术可以将开销降低80%,而70%的射击技术和70%。
Millimeter wave (mmWave) communication is one viable solution to support Gbps sensor data sharing in vehicular networks. The use of large antenna arrays at mmWave and high mobility in vehicular communication make it challenging to design fast beam alignment solutions. In this paper, we propose a novel framework that learns the channel angle-of-departure (AoD) statistics at a base station (BS) and uses this information to efficiently acquire channel measurements. Our framework integrates online learning for compressive sensing (CS) codebook learning and the optimized codebook is used for CS-based beam alignment. We formulate a CS matrix optimization problem based on the AoD statistics available at the BS. Furthermore, based on the CS channel measurements, we develop techniques to update and learn such channel AoD statistics at the BS. We use the upper confidence bound (UCB) algorithm to learn the AoD statistics and the CS matrix. Numerical results show that the CS matrix in the proposed framework provides faster beam alignment than standard CS matrix designs. Simulation results indicate that the proposed beam training technique can reduce overhead by 80% compared to exhaustive beam search, and 70% compared to standard CS solutions that do not exploit any AoD statistics.