论文标题
随机到达的多源上行链接中的基于信息的调度:POMDP方法
Age-of-Information-based Scheduling in Multiuser Uplinks with Stochastic Arrivals: A POMDP Approach
论文作者
论文摘要
在本文中,我们考虑了一个多用户上行链路状态更新系统,其中监视器旨在通过共享无线通道从多个端点节点及时收集随机生成的状态更新。我们采用最近提出的指标,称为信息年龄(AOI),以量化信息的及时性和新鲜感。由于在末端节点端的状态更新随机生成,因此监视器仅掌握了对状态更新到达的部分知识。在这样的实用情况下,我们旨在解决一个基本的多源调度问题:如何安排结束节点以最大程度地减少网络范围的AOI?为了解决这个问题,我们将其作为部分可观察到的马尔可夫决策过程(POMDP)制定,并开发动态编程(DP)算法以获得最佳的调度策略。通过指出最佳政策在计算上是过于刺激的,我们进一步设计了一种低复杂性的近视政策,该政策只能最大程度地减少一步的预期奖励。仿真结果表明,近视政策的绩效可以处理最佳政策的效果,并且比基线政策的效果更好。
In this paper, we consider a multiuser uplink status update system, where a monitor aims to timely collect randomly generated status updates from multiple end nodes through a shared wireless channel. We adopt the recently proposed metric, termed age of information (AoI), to quantify the information timeliness and freshness. Due to the random generation of the status updates at the end node side, the monitor only grasps a partial knowledge of the status update arrivals. Under such a practical scenario, we aim to address a fundamental multiuser scheduling problem: how to schedule the end nodes to minimize the network-wide AoI? To solve this problem, we formulate it as a partially observable Markov decision process (POMDP), and develop a dynamic programming (DP) algorithm to obtain the optimal scheduling policy. By noting that the optimal policy is computationally prohibitive, we further design a low-complexity myopic policy that only minimizes the one-step expected reward. Simulation results show that the performance of the myopic policy can approach that of the optimal policy, and is better than that of the baseline policy.