论文标题

关于COVID-19的医疗对话的产生

On the Generation of Medical Dialogues for COVID-19

论文作者

Yang, Wenmian, Zeng, Guangtao, Tan, Bowen, Ju, Zeqian, Chakravorty, Subrato, He, Xuehai, Chen, Shu, Yang, Xingyi, Wu, Qingyang, Yu, Zhou, Xing, Eric, Xie, Pengtao

论文摘要

在COVID-19的大流行中,经历了COVID19相关症状或暴露于危险因素的人们迫切需要咨询医生。由于医院的关闭,许多咨询服务已在网上移动。由于医疗专业人员的短缺,许多人无法及时获得在线咨询。为了解决这个问题,我们旨在开发可以提供与共同相关咨询的医学对话系统。我们收集了两个对话数据集-Coviddialog-(分别用英语和中文),其中包含医生与患者之间关于Covid-19的对话。在这两个数据集上,我们根据变压器,GPT和BERT-GPT训练多个对话生成模型。由于两个COVID-19对话数据集的大小较小,这具有过度拟合的高风险,因此我们利用转移学习来减轻数据缺陷。具体而言,我们在对话框数据集和其他大规模文本上使用了验证的变压器,GPT和BERT-GPT的模型,然后在我们的CovidDialog任务上进行填充。我们对这些模型产生的响应进行自动和人类评估。结果表明,产生的反应在像医生一样有望与对话历史相关,并且在临床上有用。数据和代码可从https://github.com/ucsd-ai4h/covid-dialogue获得。

Under the pandemic of COVID-19, people experiencing COVID19-related symptoms or exposed to risk factors have a pressing need to consult doctors. Due to hospital closure, a lot of consulting services have been moved online. Because of the shortage of medical professionals, many people cannot receive online consultations timely. To address this problem, we aim to develop a medical dialogue system that can provide COVID19-related consultations. We collected two dialogue datasets -- CovidDialog -- (in English and Chinese respectively) containing conversations between doctors and patients about COVID-19. On these two datasets, we train several dialogue generation models based on Transformer, GPT, and BERT-GPT. Since the two COVID-19 dialogue datasets are small in size, which bear high risk of overfitting, we leverage transfer learning to mitigate data deficiency. Specifically, we take the pretrained models of Transformer, GPT, and BERT-GPT on dialog datasets and other large-scale texts, then finetune them on our CovidDialog tasks. We perform both automatic and human evaluation of responses generated by these models. The results show that the generated responses are promising in being doctor-like, relevant to the conversation history, and clinically informative. The data and code are available at https://github.com/UCSD-AI4H/COVID-Dialogue.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源