论文标题

远程短块长度过程监视:分辨率和数据新鲜度之间的权衡

Remote Short Blocklength Process Monitoring: Trade-off Between Resolution and Data Freshness

论文作者

Roth, Stefan, Arafa, Ahmed, Poor, H. Vincent, Sezgin, Aydin

论文摘要

在网络物理系统中,如5G及以后一样,多个物理过程需要在远程设备上及时在线监视。在那里,收到的信息用于估计当前和将来的过程值。通过通信通道传输过程数据时,使用源通道编码以减少数据错误。在传输过程中,高数据分辨率有助于捕获过程变量的值。但是,由于估计质量随着时间的流逝而降低,这通常会导致较长的变速箱延迟降低数据的利用率。在本文中,在高斯 - 马尔科夫过程中捕获了最新数据和精确测量之间的权衡。信息年龄(AOI)度量用于评估数据及时性,而均方误差(MSE)用于评估预测过程值的精确度。 AOI固有地出现在MSE表达式中,但相对更容易优化。我们的目标是最大程度地减少两个指标的时间平均版本。我们遵循一种简短的区块源通道编码方法,并优化所使用的代码的参数,以描述MSE和AOI之间的可实现区域。

In cyber-physical systems, as in 5G and beyond, multiple physical processes require timely online monitoring at a remote device. There, the received information is used to estimate current and future process values. When transmitting the process data over a communication channel, source-channel coding is used in order to reduce data errors. During transmission, a high data resolution is helpful to capture the value of the process variables precisely. However, this typically comes with long transmission delays reducing the utilizability of the data, since the estimation quality gets reduced over time. In this paper, the trade-off between having recent data and precise measurements is captured for a Gauss-Markov process. An Age-of-Information (AoI) metric is used to assess data timeliness, while mean square error (MSE) is used to assess the precision of the predicted process values. AoI appears inherently within the MSE expressions, yet it can be relatively easier to optimize. Our goal is to minimize a time-averaged version of both metrics. We follow a short blocklength source-channel coding approach, and optimize the parameters of the codes being used in order to describe an achievability region between MSE and AoI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源