论文标题

加强文本样式转移的奖励框架

Reinforced Rewards Framework for Text Style Transfer

论文作者

Sancheti, Abhilasha, Krishna, Kundan, Srinivasan, Balaji Vasan, Natarajan, Anandhavelu

论文摘要

样式传输涉及算法,以将文本的风格属性传递到另一个文本中,同时确保保留核心内容。由于其广泛应用于量身定制的文本生成,因此对文本样式传输领域引起了很多兴趣。现有作品根据内容保存和转移强度评估样式转移模型。在这项工作中,我们提出了一个基于增强学习的框架,该框架直接奖励这些目标指标的框架,从而可以更好地转移目标样式。我们根据三个独立任务的自动评估和人类评估表明,我们提出的框架的表现得到了改善:其中,我们将文本风格从正式,高兴奋性转移到低兴奋性,现代英语,莎士比亚英语,在所有三种情况下为反相。在现有的最新框架上,提出的框架的性能改善表明了该方法的可行性。

Style transfer deals with the algorithms to transfer the stylistic properties of a piece of text into that of another while ensuring that the core content is preserved. There has been a lot of interest in the field of text style transfer due to its wide application to tailored text generation. Existing works evaluate the style transfer models based on content preservation and transfer strength. In this work, we propose a reinforcement learning based framework that directly rewards the framework on these target metrics yielding a better transfer of the target style. We show the improved performance of our proposed framework based on automatic and human evaluation on three independent tasks: wherein we transfer the style of text from formal to informal, high excitement to low excitement, modern English to Shakespearean English, and vice-versa in all the three cases. Improved performance of the proposed framework over existing state-of-the-art frameworks indicates the viability of the approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源