论文标题

常识性证据产生和注入阅读理​​解

Commonsense Evidence Generation and Injection in Reading Comprehension

论文作者

Liu, Ye, Yang, Tao, You, Zeyu, Fan, Wei, Yu, Philip S.

论文摘要

人类铲球阅读理解不仅基于给定的上下文本身,而且通常依赖于以后的常识。在本文中,我们提出了一个常识性证据生成和注射框架,以使机器能够为机器提供常识性推理的能力,名为CEGI。该框架将两种辅助常识证据注入全面阅读,以使机器具有理性思维的能力。具体来说,我们构建了两个证据生成器:第一个生成器旨在通过语言模型生成文本证据。另一个发电机旨在从图形完成后从常识性知识图中提取事实证据(自动对准文本曲线)。这些证据结合了上下文常识,并充当模型的附加输入。此后,我们提出了一个深厚的上下文编码器,以在段落,问题,选项和证据之间提取语义关系。最后,我们采用胶囊网络从关系中提取不同的语言单元(单词和短语),并根据提取的单元动态预测最佳选项。 COSMOSQA数据集的实验表明,所提出的CEGI模型的表现优于当前的最新方法,并在排行榜上实现了准确性(83.6%)。

Human tackle reading comprehension not only based on the given context itself but often rely on the commonsense beyond. To empower the machine with commonsense reasoning, in this paper, we propose a Commonsense Evidence Generation and Injection framework in reading comprehension, named CEGI. The framework injects two kinds of auxiliary commonsense evidence into comprehensive reading to equip the machine with the ability of rational thinking. Specifically, we build two evidence generators: the first generator aims to generate textual evidence via a language model; the other generator aims to extract factual evidence (automatically aligned text-triples) from a commonsense knowledge graph after graph completion. Those evidences incorporate contextual commonsense and serve as the additional inputs to the model. Thereafter, we propose a deep contextual encoder to extract semantic relationships among the paragraph, question, option, and evidence. Finally, we employ a capsule network to extract different linguistic units (word and phrase) from the relations, and dynamically predict the optimal option based on the extracted units. Experiments on the CosmosQA dataset demonstrate that the proposed CEGI model outperforms the current state-of-the-art approaches and achieves the accuracy (83.6%) on the leaderboard.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源