论文标题

参考姿势生成长期视觉定位通过学习的特征并查看合成

Reference Pose Generation for Long-term Visual Localization via Learned Features and View Synthesis

论文作者

Zhang, Zichao, Sattler, Torsten, Scaramuzza, Davide

论文摘要

视觉定位是自动驾驶和增强现实的关键促成技术之一。具有准确的6自由度(DOF)参考姿势的高质量数据集是基准和改进现有方法的基础。传统上,参考姿势是通过结构 - 动作(SFM)获得的。但是,SFM本身依赖于本地功能,这些功能在不同条件下拍摄图像时很容易失败,例如,白天/晚上的变化。同时,手动注释特征对应关系不可扩展,并且可能不准确。在这项工作中,我们提出了一种半自动化的方法,以基于3D模型的渲染与真实图像之间的特征匹配来生成参考姿势。鉴于初始姿势估计,我们的方法根据特征匹配而与当前姿势估计的模型渲染相对于特征匹配。我们大大改善了流行的亚洲夜间数据集的夜间参考姿势,表明最先进的视觉定位方法的性能要比原始参考姿势预期的要好(最高$ 47 \%\%$)。我们使用新的夜间测试图像扩展数据集,为我们的新参考姿势提供不确定性估计,并引入新的评估标准。我们将使我们的参考姿势和出版后公开可用的框架。

Visual Localization is one of the key enabling technologies for autonomous driving and augmented reality. High quality datasets with accurate 6 Degree-of-Freedom (DoF) reference poses are the foundation for benchmarking and improving existing methods. Traditionally, reference poses have been obtained via Structure-from-Motion (SfM). However, SfM itself relies on local features which are prone to fail when images were taken under different conditions, e.g., day/ night changes. At the same time, manually annotating feature correspondences is not scalable and potentially inaccurate. In this work, we propose a semi-automated approach to generate reference poses based on feature matching between renderings of a 3D model and real images via learned features. Given an initial pose estimate, our approach iteratively refines the pose based on feature matches against a rendering of the model from the current pose estimate. We significantly improve the nighttime reference poses of the popular Aachen Day-Night dataset, showing that state-of-the-art visual localization methods perform better (up to $47\%$) than predicted by the original reference poses. We extend the dataset with new nighttime test images, provide uncertainty estimates for our new reference poses, and introduce a new evaluation criterion. We will make our reference poses and our framework publicly available upon publication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源