论文标题
有效的贝叶斯反演,用于形状重建光刻面具
Efficient Bayesian inversion for shape reconstruction of lithography masks
论文作者
论文摘要
背景: 散射法是一种快速,间接和非破坏性光学方法,用于生产光刻面具的质量控制。为了符合即将提高准确性的需求,解决了反向问题,必须定义一个计算昂贵的远期模型,哪些将几何参数映射到衍射光强度。 目的: 为了量化几何参数重建中的不确定性,必须引入评估前向模型的替代物的斋戒。 方法: 我们使用基于非侵入性多项式混乱的正向模型近似,该模型可以提高速度,从而通过直接的贝叶斯推论来探索后部。此外,该替代物允许在没有其他计算开销的情况下进行全球灵敏度分析。 结果: 这种方法得出有关硅线光栅几何参数的完整分布的信息,作为回报,该参数以均值,方差和参数的高阶矩来量化重建不确定性。 结论: 多项式混乱替代物的使用可以量化参数影响和重建不确定性。由于不需要适应昂贵的远期模型,因此这种方法易于使用。
Background: Scatterometry is a fast, indirect and non-destructive optical method for quality control in the production of lithography masks. To solve the inverse problem in compliance with the upcoming need for improved accuracy, a computationally expensive forward model has to be defined which maps geometry parameters to diffracted light intensities. Aim: To quantify the uncertainties in the reconstruction of the geometry parameters, a fast to evaluate surrogate for the forward model has to be introduced. Approach: We use a non-intrusive polynomial chaos based approximation of the forward model which increases speed and thus enables the exploration of the posterior through direct Bayesian inference. Additionally, this surrogate allows for a global sensitivity analysis at no additional computational overhead. Results: This approach yields information about the complete distribution of the geometry parameters of a silicon line grating, which in return allows to quantify the reconstruction uncertainties in the form of means, variances and higher order moments of the parameters. Conclusion: The use of a polynomial chaos surrogate allows to quantify both parameter influences and reconstruction uncertainties. This approach is easy to use since no adaptation of the expensive forward model is required.