论文标题
双场理论中的公制代数和狄拉克生成操作员
Metric algebroid and Dirac generating operator in Double Field Theory
论文作者
论文摘要
我们根据度量代数提供了双场理论(DFT)的表述。我们得出了比安奇身份的协变量完成,即扭转中的前叶族身份和改进的广义曲率,以及包括dilaton贡献在内的前苯基身份。 Dirac生成操作员的派生支架公式应用于度量代数。我们提出了一个普遍的地纳维奇公式,并表明它等同于野鸡的身份。在这种情况下,将DILATON视为歧义中的歧义。预计的广义Lichnerowicz公式提供了DFT动作的新表述。旋转束上的广义谎言衍生物的闭合使bianchi身份作为一致性条件。讨论了与广义超级方程(GSE)的关系。
We give a formulation of Double Field Theory (DFT) based on a metric algebroid. We derive a covariant completion of the Bianchi identities, i.e. the pre-Bianchi identity in torsion and an improved generalized curvature, and the pre-Bianchi identity including the dilaton contribution. The derived bracket formulation by the Dirac generating operator is applied to the metric algebroid. We propose a generalized Lichnerowicz formula and show that it is equivalent to the pre-Bianchi identities. The dilaton in this setting is included as an ambiguity in the divergence. The projected generalized Lichnerowicz formula gives a new formulation of the DFT action. The closure of the generalized Lie derivative on the spin bundle yields the Bianchi identities as a consistency condition. A relation to the generalized supergravity equations (GSE) is discussed.