论文标题

3D中克莱因·戈登 - 扎哈罗夫系统的本地良好性

Local well-posedness for the Klein-Gordon-Zakharov system in 3D

论文作者

Pecher, Hartmut

论文摘要

我们研究了3D中Klein-Gordon-Zakharov系统的Cauchy问题,其规律性低。我们将规律性降低到扩展到端点方面的临界值。决定性双线性估计是通过Bejenaru-Herr为Zakharov系统开发的方法证明的,并且Kinoshita已经应用于2D的Klein-Gordon-Zakharov系统。

We study the Cauchy problem for the Klein-Gordon-Zakharov system in 3D with low regularity data. We lower down the regularity to the critical value with respect to scaling up to the endpoint. The decisive bilinear estimates are proved by means of methods developed by Bejenaru-Herr for the Zakharov system and already applied by Kinoshita to the Klein-Gordon-Zakharov system in 2D.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源