论文标题
重新审视的稳定均匀的Orlicz空间
Disjointly homogeneous Orlicz spaces revisited
论文作者
论文摘要
令$ 1 \ le p \ le \ infty $。据说Banach晶格$ x $ te $ p $ disjointly同质性或$(p-dh)$(resp。Inper。受限的$(p-dh)$,如果每个均等的分离序列中的$ x $中的每个正常的分离序列(sives。dist。discoint subset的特征性功能的每个正常化的序列)都包含$ x $ x $ x $ $ x $ gecor的$ x $ el f fecor的$ x $ y的$ y。我们重新访问了Orlicz空间的$ DH $ -DH $ PROPERTIES,并完善了该主题的一些先前结果,表明$(P-DH)$ - 属性在Orlicz Space的类别中不稳定,并且有限的$(P-DH)$(P-DH)$(P-DH)$(P-DH)$ ORLICZ $ ORLICZ的空间不同。此外,我们给出了统一$(P-DH)$ ORLICZ空间的特征,并在此属性和二元性之间建立了封闭的连接。
Let $1\le p\le\infty$. A Banach lattice $X$ is said to be $p$-disjointly homogeneous or $(p-DH)$ (resp. restricted $(p-DH)$) if every normalized disjoint sequence in $X$ (resp. every normalized sequence of characteristic functions of disjoint subsets) contains a subsequence equivalent in $X$ to the unit vector basis of $\ell_p$. We revisit $DH$-properties of Orlicz spaces and refine some previous results of this topic, showing that $(p-DH)$-property is not stable in the class of Orlicz spaces and the classes of restricted $(p-DH)$ and $(p-DH)$ Orlicz spaces are different. Moreover, we give a characterization of uniform $(p-DH)$ Orlicz spaces and establish also closed connections between this property and the duality of $DH$-property.