论文标题

3D重建的简单且可扩展的形状表示

A Simple and Scalable Shape Representation for 3D Reconstruction

论文作者

Michalkiewicz, Mateusz, Belilovsky, Eugene, Baktashmotlagh, Mahsa, Eriksson, Anders

论文摘要

深度学习应用于3D形状的重建,人们的兴趣越来越大。近年来,一种流行的3D重建和产生方法是CNN编码器模型通常应用于体素空间。但是,由于限制了这些模型的有效性的分辨率,这通常缩放得非常差。已经提出了用于解码为3D形状的几种复杂的替代方案,通常依赖于解码器模型的复杂深度学习体系结构。在这项工作中,我们表明没有必要这种额外的复杂性,并且实际上可以使用线性解码器获得高质量的3D重建,这是从表面签名距离函数(SDF)的主成分分析获得的。这种方法可以轻松扩展到更大的分辨率。我们在多个实验中表明,我们的方法与最先进的方法具有竞争力。它还允许使用专门为SDF变换设计的损失对目标任务进行微调,从而获得进一步的收益。

Deep learning applied to the reconstruction of 3D shapes has seen growing interest. A popular approach to 3D reconstruction and generation in recent years has been the CNN encoder-decoder model usually applied in voxel space. However, this often scales very poorly with the resolution limiting the effectiveness of these models. Several sophisticated alternatives for decoding to 3D shapes have been proposed typically relying on complex deep learning architectures for the decoder model. In this work, we show that this additional complexity is not necessary, and that we can actually obtain high quality 3D reconstruction using a linear decoder, obtained from principal component analysis on the signed distance function (SDF) of the surface. This approach allows easily scaling to larger resolutions. We show in multiple experiments that our approach is competitive with state-of-the-art methods. It also allows the decoder to be fine-tuned on the target task using a loss designed specifically for SDF transforms, obtaining further gains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源