论文标题

使用痕量枚举关系验证定量超腐烂

Verification of Quantitative Hyperproperties Using Trace Enumeration Relations

论文作者

Sahai, Shubham, Sinha, Rohit, Subramanyan, Pramod

论文摘要

许多重要的加密原语都提供了可以指定为定量超构成的概率保证。这些规格规定了系统中满足某些约束的系统中一定数量的痕迹的存在。对此类超构物的验证极具挑战性,因为它们涉及关于无限数量的不同痕迹的同时推理。在本文中,我们介绍了一种基于痕量枚举关系概念来验证定量超腐烂的技术。这些关系使我们能够将痕量计数的问题减少为一阶逻辑中公式的模型计数之一。我们还引入了一组推理规则,以了解机器检查的推理,以了解一阶公式的满足解决方案数量(又称模型计数)。将这两个组件放在一起,可以对无限状态系统的定量超代理进行半自动验证。我们使用我们的方法来证明无界大小的路径访问模式的机密性,简单的交互式零知识证明协议的健全性以及过去在过去工作中研究的定量超普罗伯特的其他应用。

Many important cryptographic primitives offer probabilistic guarantees of security that can be specified as quantitative hyperproperties; these are specifications that stipulate the existence of a certain number of traces in the system satisfying certain constraints. Verification of such hyperproperties is extremely challenging because they involve simultaneous reasoning about an unbounded number of different traces. In this paper, we introduce a technique for verification of quantitative hyperproperties based on the notion of trace enumeration relations. These relations allow us to reduce the problem of trace-counting into one of model-counting of formulas in first-order logic. We also introduce a set of inference rules for machine-checked reasoning about the number of satisfying solutions to first-order formulas (aka model counting). Putting these two components together enables semi-automated verification of quantitative hyperproperties on infinite state systems. We use our methodology to prove confidentiality of access patterns in Path ORAMs of unbounded size, soundness of a simple interactive zero-knowledge proof protocol as well as other applications of quantitative hyperproperties studied in past work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源