论文标题

$ \ mathbb {a} $ - 数字半径为$ 2 \ times 2 $ block矩阵的一些上限

Some upper bounds for the $\mathbb{A}$-numerical radius of $2\times 2$ block matrices

论文作者

Xu, Qingxiang, Ye, Zhongming, Zamani, Ali

论文摘要

令$ \ mathbb {a} = \ left(\ begin {array} {cc} a&0 \\ 0&a \\ \ end {array} \ right)$是$ 2 \ times2 $ times2 $ diagonal操作员matrix由正限制的操作员确定。对于半希勒伯式运营商$ x $和$ y $,我们首先显示\ begin {align*} w^2 _ {\ mathbb {a}}} \ left(\ begin {bmatrix} 0&x \\ x \\ y&0 \ frac {1} {4} \ max \ big \ \ {{{\ big \ | xx^{\ sharp_a} + y^{\ sharp_a} y \ big \ |} _ {a} yy^{\ sharp_a} \ big \ |} _ {a} \ big \} + \ frac {1} {2} {2} \ max \ big \ big \ big \ {w_ {a}(xy) $w_{\mathbb{A}}(\cdot)$, ${\|\cdot\|}_{A}$ and $w_{A}(\cdot)$ are the $\mathbb{A}$-numerical radius, $A$-operator seminorm and $A$-numerical radius, respectively.然后,我们应用上述不平等,以找到$ \ mathbb {a} $ - 某些$ 2 \ times 2 $运算符矩阵的数值半径。特别是,我们获得了早期$ a $ numerical radius的一些改进,用于半希尔伯特式运营商。还给出了$ \ mathbb {a} $ - $ 2 \ times 2 $ block block矩阵的$ \ mathbb {a} $的上限。

Let $\mathbb{A}=\left( \begin{array}{cc} A & 0 \\ 0 & A \\ \end{array} \right)$ be the $2\times2$ diagonal operator matrix determined by a positive bounded operator $A$. For semi-Hilbertian operators $X$ and $Y$, we first show that \begin{align*} w^2_{\mathbb{A}}\left(\begin{bmatrix} 0 & X \\ Y & 0 \end{bmatrix}\right) &\leq \frac{1}{4}\max\Big\{{\big\|XX^{\sharp_A} + Y^{\sharp_A}Y\big\|}_{A}, {\big\|X^{\sharp_A}X + YY^{\sharp_A}\big\|}_{A}\Big\} + \frac{1}{2}\max\big\{w_{A}(XY), w_{A}(YX)\big\}, \end{align*} where $w_{\mathbb{A}}(\cdot)$, ${\|\cdot\|}_{A}$ and $w_{A}(\cdot)$ are the $\mathbb{A}$-numerical radius, $A$-operator seminorm and $A$-numerical radius, respectively. We then apply the above inequality to find some upper bounds for the $\mathbb{A}$-numerical radius of certain $2\times 2$ operator matrices. In particular, we obtain some refinements of earlier $A$-numerical radius inequalities for semi-Hilbertian operators. An upper bound for the $\mathbb{A}$-numerical radius of $2\times 2$ block matrices of semi-Hilbertian space operators is also given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源