论文标题
在孤立的决定性奇点上的功能家族的平等性
Equisingularity of families of functions on isolated determinantal singularities
论文作者
论文摘要
我们研究了功能细菌系列$ \ {f_t \ colon(x_t,0)\ to(\ mathbb {c},0),0)\} $的等式性,其中$(x_t,0)$是$ d $ d $ - d $ dimensional-dimensional simentional syparational salionate syst sypated systrated systrated secarated secarated necatiental newantal singularity。我们定义了纤维的$(d-1)$ th极性多重性$ x_t \ cap f_t^{ - 1}(0)$,我们展示了极性多重性的恒定性与$ f_t $的milnor数量的恒定性以及家庭的惠特尼公平性。
We study the equisingularity of a family of function germs $\{f_t\colon(X_t,0)\to (\mathbb{C},0)\}$, where $(X_t,0)$ are $d$-dimensional isolated determinantal singularities. We define the $(d-1)$th polar multiplicity of the fibers $X_t\cap f_t^{-1}(0)$ and we show how the constancy of the polar multiplicities is related to the constancy of the Milnor number of $f_t$ and the Whitney equisingularity of the family.