论文标题

在Grassmann线性代码图上

On the Grassmann Graph of Linear Codes

论文作者

Cardinali, Ilaria, Giuzzi, Luca, Kwiatkowski, Mariusz

论文摘要

令$γ(n,k)$为Grassmann图,由$ \ n $的$ k $维二维子空间$ \ mathbb f $,对于$ t \ in \ in \ mathbb {n} \ setMinus \ setminus \ {0 \} $,让$ t $ t $ t $ und $ und $ un,k)线性$ [n,k] $ - 具有最小双距离的代码至少$ t+1 $。我们表明,如果$ | {\ mathbb f} | \ geq {n \ select t} $,则连接$δ_t(n,k)$,并且在$γ(n,k)$中添加了等法嵌入。这概括了[M. Kwiatkowski,M。Pankov,“在线性代码之间的距离上”,有限字段应用。 39(2016),251--263]和[M. Kwiatkowski,M。Pankov,A。Pasini,“投影代码的图形”有限字段Appl。 54(2018),15--29]。

Let $Γ(n,k)$ be the Grassmann graph formed by the $k$-dimensional subspaces of a vector space of dimension $n$ over a field $\mathbb F$ and, for $t\in \mathbb{N}\setminus \{0\}$, let $Δ_t(n,k)$ be the subgraph of $Γ(n,k)$ formed by the set of linear $[n,k]$-codes having minimum dual distance at least $t+1$. We show that if $|{\mathbb F}|\geq{n\choose t}$ then $Δ_t(n,k)$ is connected and it is isometrically embedded in $Γ(n,k)$. This generalizes some results of [M. Kwiatkowski, M. Pankov, "On the distance between linear codes", Finite Fields Appl. 39 (2016), 251--263] and [M. Kwiatkowski, M. Pankov, A. Pasini, "The graphs of projective codes" Finite Fields Appl. 54 (2018), 15--29].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源