论文标题
稀疏神经网络的GPU加速
GPU Acceleration of Sparse Neural Networks
论文作者
论文摘要
在本文中,我们使用图形处理单元(GPU)来加速稀疏和任意的结构化神经网络。稀疏的网络在网络中具有与前面和以下层中节点完全连接的节点,并且任意结构神经网络在每个层中都有不同数量的节点。具有任意结构的稀疏神经网络通常是在神经网络修剪和进化机器学习策略等过程中创建的。我们表明,使用图形处理单元可以完全激活此类神经网络。我们做一个预言步骤,以确定网络中所有节点的依赖性组,并使用该信息来指导神经网络中的激活发展。然后,我们计算GPU中自己独立线程中每个节点的激活,这允许大规模并行化。我们使用CUDA框架来实施我们的方法并比较顺序和GPU实现的结果。我们的结果表明,稀疏神经网络的激活非常适合GPU加速,并可以帮助加快生成类似结构的网络或其他过程的机器学习策略。
In this paper, we use graphics processing units(GPU) to accelerate sparse and arbitrary structured neural networks. Sparse networks have nodes in the network that are not fully connected with nodes in preceding and following layers, and arbitrary structure neural networks have different number of nodes in each layers. Sparse Neural networks with arbitrary structures are generally created in the processes like neural network pruning and evolutionary machine learning strategies. We show that we can gain significant speedup for full activation of such neural networks using graphical processing units. We do a prepossessing step to determine dependency groups for all the nodes in a network, and use that information to guide the progression of activation in the neural network. Then we compute activation for each nodes in its own separate thread in the GPU, which allows for massive parallelization. We use CUDA framework to implement our approach and compare the results of sequential and GPU implementations. Our results show that the activation of sparse neural networks lends very well to GPU acceleration and can help speed up machine learning strategies which generate such networks or other processes that have similar structure.