论文标题

转换任务表示以执行新任务

Transforming task representations to perform novel tasks

论文作者

Lampinen, Andrew K., McClelland, James L.

论文摘要

智力的一个重要方面是能够根据其与以前的任务的关系来适应新任务而无需任何直接经验(零射)。人类可以表现出这种认知灵活性。相比之下,在特定任务中实现超人类绩效的模型通常无法适应甚至稍微改变任务。为了解决这个问题,我们提出了一个一般的计算框架,以根据其与先前任务的关系来适应新任务。我们首先要学习任务的向量表示。为了适应新任务,我们建议使用元映射,更高阶的任务来转换基本任务表示。我们证明了该框架在各种任务和计算范式中的有效性,从回归到图像分类和强化学习。我们将人类的适应性和基于语言的方法进行比较。在这些域中,元映射是成功的,即使新任务直接与先前的经验相矛盾,也经常在没有任何数据的情况下实现80-90%的性能,而没有任何数据。我们进一步表明,元映射不仅可以通过学习的关系概括为新任务,而且还可以在培训期间使用看不见的新关系概括。最后,使用元映射作为起点可以大大加速以后的新任务学习,并大大减少学习时间和累积错误。我们的结果提供了有关智能适应性的可能计算基础的洞察力,并为认知灵活性建模并建立更灵活的人工智能系统提供了可能的框架。

An important aspect of intelligence is the ability to adapt to a novel task without any direct experience (zero-shot), based on its relationship to previous tasks. Humans can exhibit this cognitive flexibility. By contrast, models that achieve superhuman performance in specific tasks often fail to adapt to even slight task alterations. To address this, we propose a general computational framework for adapting to novel tasks based on their relationship to prior tasks. We begin by learning vector representations of tasks. To adapt to new tasks, we propose meta-mappings, higher-order tasks that transform basic task representations. We demonstrate the effectiveness of this framework across a wide variety of tasks and computational paradigms, ranging from regression to image classification and reinforcement learning. We compare to both human adaptability and language-based approaches to zero-shot learning. Across these domains, meta-mapping is successful, often achieving 80-90% performance, without any data, on a novel task, even when the new task directly contradicts prior experience. We further show that meta-mapping can not only generalize to new tasks via learned relationships, but can also generalize using novel relationships unseen during training. Finally, using meta-mapping as a starting point can dramatically accelerate later learning on a new task, and reduce learning time and cumulative error substantially. Our results provide insight into a possible computational basis of intelligent adaptability and offer a possible framework for modeling cognitive flexibility and building more flexible artificial intelligence systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源