论文标题

渐进式语义分段

Progressive Adversarial Semantic Segmentation

论文作者

Imran, Abdullah-Al-Zubaer, Terzopoulos, Demetri

论文摘要

随着深度学习技术(例如卷积神经网络)的出现,医学图像计算已迅速发展。考虑到全面的监督,深度卷积神经网络可以表现出色。但是,这种完全监督模型在各种图像分析任务(例如,从医学图像中的解剖学或病变分割)的成功仅限于大量标记数据的可用性。给定样本量较小,此类模型的数据偏向于大域移动。为了解决这个问题,我们提出了一种新型的端到端医学图像分割模型,即渐进性对抗性语义分割(PASS),可以在训练时间期间不需要任何特定于域的数据,从而改善细分预测。我们对8种公共糖尿病性视网膜病和胸部X射线数据集进行了广泛的实验,证实了通行证的有效性,以进行准确的血管和肺部分割,包括对内域和交叉域评估。

Medical image computing has advanced rapidly with the advent of deep learning techniques such as convolutional neural networks. Deep convolutional neural networks can perform exceedingly well given full supervision. However, the success of such fully-supervised models for various image analysis tasks (e.g., anatomy or lesion segmentation from medical images) is limited to the availability of massive amounts of labeled data. Given small sample sizes, such models are prohibitively data biased with large domain shift. To tackle this problem, we propose a novel end-to-end medical image segmentation model, namely Progressive Adversarial Semantic Segmentation (PASS), which can make improved segmentation predictions without requiring any domain-specific data during training time. Our extensive experimentation with 8 public diabetic retinopathy and chest X-ray datasets, confirms the effectiveness of PASS for accurate vascular and pulmonary segmentation, both for in-domain and cross-domain evaluations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源