论文标题

关于模型预测控制的神经网络方法的培训和评估

On Training and Evaluation of Neural Network Approaches for Model Predictive Control

论文作者

Winqvist, Rebecka, Venkitaraman, Arun, Wahlberg, Bo

论文摘要

本文的贡献是使用约束神经网络实施的模型预测控制(MPC)培训和评估的框架。最近的研究提出,使用具有可区分凸优化层的神经网络来实现模型预测控制器。动机是用具有优化层的神经网络形式的学习映射替换安全关键反馈控制系统中的实时优化。这样的映射将其视为状态向量的输入,并将控制定律视为输出。学习是使用从离线MPC模拟生成的培训数据进行的。但是,在文献中缺乏根据模型验证和有效的培训数据生成来表征学习方法的一般框架。在本文中,我们迈出了开发这种连贯框架的第一步。我们讨论学习问题与系统识别,特别是输入设计,模型结构选择和模型验证的相似之处。我们考虑对Pytorch中神经网络体系结构的研究,其明确的MPC约束使用CVXPY实现为可区分的优化层。我们提出了一种有效的方法,即使用击球和运行采样器生成受MPC模型约束的输入样品。通过使用OSOP求解MPC来生成相应的真实输出。我们建议不同的指标来验证所得方法。我们的研究进一步旨在从培训和评估的角度探索将领域知识纳入网络结构的优势。使用所提出的框架对不同的模型结构进行数值测试,以便获得基于约束神经网络的MPC的属性的更多见解。

The contribution of this paper is a framework for training and evaluation of Model Predictive Control (MPC) implemented using constrained neural networks. Recent studies have proposed to use neural networks with differentiable convex optimization layers to implement model predictive controllers. The motivation is to replace real-time optimization in safety critical feedback control systems with learnt mappings in the form of neural networks with optimization layers. Such mappings take as the input the state vector and predict the control law as the output. The learning takes place using training data generated from off-line MPC simulations. However, a general framework for characterization of learning approaches in terms of both model validation and efficient training data generation is lacking in literature. In this paper, we take the first steps towards developing such a coherent framework. We discuss how the learning problem has similarities with system identification, in particular input design, model structure selection and model validation. We consider the study of neural network architectures in PyTorch with the explicit MPC constraints implemented as a differentiable optimization layer using CVXPY. We propose an efficient approach of generating MPC input samples subject to the MPC model constraints using a hit-and-run sampler. The corresponding true outputs are generated by solving the MPC offline using OSOP. We propose different metrics to validate the resulting approaches. Our study further aims to explore the advantages of incorporating domain knowledge into the network structure from a training and evaluation perspective. Different model structures are numerically tested using the proposed framework in order to obtain more insights in the properties of constrained neural networks based MPC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源