论文标题

多相跨模式学习,用于肝细胞癌中非侵入性基因突变预测

Multi-Phase Cross-modal Learning for Noninvasive Gene Mutation Prediction in Hepatocellular Carcinoma

论文作者

Gu, Jiapan, Zhao, Ziyuan, Zeng, Zeng, Wang, Yuzhe, Qiu, Zhengyiren, Veeravalli, Bharadwaj, Goh, Brian Kim Poh, Bonney, Glenn Kunnath, Madhavan, Krishnakumar, Ying, Chan Wan, Choon, Lim Kheng, Hua, Thng Choon, Chow, Pierce KH

论文摘要

肝细胞癌(HCC)是最常见的原发性肝癌类型,也是全球与癌症相关死亡的第四大原因。了解HCC中的潜在基因突变为治疗计划和靶向治疗提供了巨大的预后价值。放射基因组学揭示了非侵入性成像特征与分子基因组学之间的关联。但是,成像功能识别是费力且容易出错的。在本文中,我们提出了使用多相CT扫描的APOB,COL11A1和ATRX基因突变预测的端到端深度学习框架。考虑到HCC中的群众内异质性(ITH),实施了多区域采样技术来生成用于实验的数据集。实验结果证明了所提出的模型的有效性。

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the fourth most common cause of cancer-related death worldwide. Understanding the underlying gene mutations in HCC provides great prognostic value for treatment planning and targeted therapy. Radiogenomics has revealed an association between non-invasive imaging features and molecular genomics. However, imaging feature identification is laborious and error-prone. In this paper, we propose an end-to-end deep learning framework for mutation prediction in APOB, COL11A1 and ATRX genes using multiphasic CT scans. Considering intra-tumour heterogeneity (ITH) in HCC, multi-region sampling technology is implemented to generate the dataset for experiments. Experimental results demonstrate the effectiveness of the proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源