论文标题
计算决定因素,其他特征多项式系数,而在任意维度的克利福德代数中
On computing the determinant, other characteristic polynomial coefficients, and inverse in Clifford algebras of arbitrary dimension
论文作者
论文摘要
在本文中,我们解决了计算任意维度Clifford代数逆的问题的问题。我们提供了不同类型(显式和递归)的无基本公式,该公式在实际的Clifford代数(或几何代数)中,在任意维度的矢量空间上,在实际Clifford代数(或几何代数)中,邻接和逆。该公式仅涉及在不明确使用矩阵表示的情况下,共轭的乘法,求和和操作的操作。我们使用Clifford代数的方法(包括作者在先前的论文中提出的季学方法以及本文提出的特殊类型的连接操作方法)以及矩阵理论的数值方法的概括(FADDEEV-LEVERRIER ALGORITHM基于Cayley-Hamilton the Orderial the Odter the Colderial the Colderial;在本文中,多项式)。我们介绍了特殊类型的连接和研究操作之间的研究与投影操作之间的关系的运作的构建。我们将这种结构用于公式的分析证明,用于在克利福德代数中邻接的其他特征多项式系数,邻接和逆。反向的无基本公式为我们提供了无基础的线性代数方程解决方案,这些解决方案被广泛用于计算机科学,图像和信号处理,物理和工程,控制理论等。本文的结果可用于符号计算。
In this paper, we solve the problem of computing the inverse in Clifford algebras of arbitrary dimension. We present basis-free formulas of different types (explicit and recursive) for the determinant, other characteristic polynomial coefficients, adjugate, and inverse in real Clifford algebras (or geometric algebras) over vector spaces of arbitrary dimension $n$. The formulas involve only the operations of multiplication, summation, and operations of conjugation without explicit use of matrix representation. We use methods of Clifford algebras (including the method of quaternion typification proposed by the author in previous papers and the method of operations of conjugation of special type presented in this paper) and generalizations of numerical methods of matrix theory (the Faddeev-LeVerrier algorithm based on the Cayley-Hamilton theorem; the method of calculating the characteristic polynomial coefficients using Bell polynomials) to the case of Clifford algebras in this paper. We present the construction of operations of conjugation of special type and study relations between these operations and the projection operations onto fixed subspaces of Clifford algebras. We use this construction in the analytical proof of formulas for the determinant, other characteristic polynomial coefficients, adjugate, and inverse in Clifford algebras. The basis-free formulas for the inverse give us basis-free solutions to linear algebraic equations, which are widely used in computer science, image and signal processing, physics, engineering, control theory, etc. The results of this paper can be used in symbolic computation.