论文标题

在F(R,T)重力中具有对数形状功能的可遍历虫洞

Traversable wormholes with logarithmic shape function in f(R, T) gravity

论文作者

Dixit, Archana, Chawla, Chanchal, Pradhan, Anirudh

论文摘要

在目前的工作中,针对线性$ f(r,t)$ gravity,$ f(r,t)= r+2λt$,提出了对数形状函数的新形式,其中$λ$是蠕虫几何形状的任意耦合常数。所需的对数形状函数为可穿越和渐近平坦的蠕虫孔完成了所有必要的条件。从$λ$的不同值的能量条件中分析了获得的虫洞溶液。已经观察到,我们针对$ f(r,t)$重力的线性形式所提出的形状功能代表了异国物质和非出现物质的存在。此外,对于$λ= 0 $,即对于一般相对性案例,已经确认了虫孔几何形状的异国物质。此外,径向状态参数$ω_{r} $,切向状态参数$ω_{t} $和各向异性参数$ \ triangle $描述了宇宙的几何形状,以$ [ - 100,100] $选择的$λ$选择的不同值提出。

In the present work, a new form of the logarithmic shape function is proposed for the linear $f(R,T)$ gravity, $f(R,T)=R+2λT$ where $λ$ is an arbitrary coupling constant, in wormhole geometry. The desired logarithmic shape function accomplishes all necessary conditions for traversable and asymptotically flat wormholes. The obtained wormhole solutions are analyzed from the energy conditions for different values of $λ$. It has been observed that our proposed shape function for the linear form of $f(R,T)$ gravity, represents the existence of exotic matter and non-exotic matter. Moreover, for $λ=0$ i.e. for the general relativity case, the existence of exotic matter for the wormhole geometry has been confirmed. Further, the behaviour of the radial state parameter $ω_{r}$, the tangential state parameter $ω_{t}$ and the anisotropy parameter $\triangle$ describing the geometry of the universe, has been presented for different values of $λ$ chosen in $[-100,100]$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源