论文标题
从动力学角度来看,合理连接的平滑投影品种的刚度
Rigidity of rationally connected smooth projective varieties from dynamical viewpoints
论文作者
论文摘要
令$ x $是合理连接的平稳射射线$ n $。我们表明,只有$ x $允许使用完全不变的分离剂的int放大的内态,$ x $是一种复曲的品种。我们还表明$ x \ cong(\ mathbb {p}^1)^{\ times n} $ if,仅当$ x $允许过多的内态$ f $ f $,以至于$ f^*| _ {\ text {n}^n}^1(x)^1(x)} $(blant Intical firciant $ n $ n $ yrace yruck y n $ yrack)的eigenvalues of $ f^*| _ {\ text {n}^1(n}^n $ n $ n $)
Let $X$ be a rationally connected smooth projective variety of dimension $n$. We show that $X$ is a toric variety if and only if $X$ admits an int-amplified endomorphism with totally invariant ramification divisor. We also show that $X\cong (\mathbb{P}^1)^{\times n}$ if and only if $X$ admits a surjective endomorphism $f$ such that the eigenvalues of $f^*|_{\text{N}^1(X)}$ (without counting multiplicities) are $n$ distinct real numbers greater than $1$.