论文标题
负折射率,完美的镜头和cesàro融合
Negative refractive index, Perfect Lens and Cesàro convergence
论文作者
论文摘要
在这封信中,我们表明,完美镜头中的evanescent Wave恢复了一种新型的融合,称为塞萨罗融合。 Cesaro收敛使我们能够扩展收敛的域,该域在分析上以Riemann Zeta函数的态度扩展到复杂平面。因此,从riemann zeta函数的属性中,我们表明,对于$ r_z' $的所有值,[$ r_z' $很复杂]。特殊值,即$ r_z'$ = 1 = 2+ib是指逃生浪的不存在的物理学家的证据。
In this letter, we show that the restoration of evanescent wave in perfect lens obeys a new kind of convergence known as Cesaro convergence. Cesaro convergence allows us to extend the domain of convergence that is analytically continuing to the complex plane in terms of Riemann zeta function. Therefore, from the properties of Riemann zeta function we show that it is not possible to restore the evanescent wave for all the values of $r_z'$, [here $r_z'$ is complex]. The special value, that is, $r_z'$ = 1=2+ib refers to the non-existence of evanescent wave, is the physicists proof of Riemann Hypothesis.