论文标题

级联控制:基于贝叶斯优化的数据驱动调整方法

Cascade Control: Data-Driven Tuning Approach Based on Bayesian Optimization

论文作者

Khosravi, Mohammad, Behrunani, Varsha, Smith, Roy S., Rupenyan, Alisa, Lygeros, John

论文摘要

级联控制器调整是一种多步迭代过程,需要在机械系统的维护和修改后常规执行。提出了一种基于贝叶斯优化的级联控制器调整的自动数据驱动方法。该方法在线性轴驱动器上进行了测试,该方法是使用第一原理模型和系统标识的组合建模的。基于从系统数据在不同候选者参数的不同候选配置中得出的性能指标的自定义成本函数是由高斯过程建模的。通过最小化采集函数,该功能可以作为采样标准,以确定随后的候选构型进行实验试验和迭代成本模型的改进,直到发现根据终止标准的最低限度为止。这会导致一个数据效率的过程,该过程很容易适应系统的不同负载或机械修改。该方法与几种自动调节的经典方法相比,并根据定义的数据驱动性能指标证明了更高的性能。研究了培训数据对成本先验的影响对达到最佳迭代次数的数量,这证明了贝叶斯优化调谐方法的效率。

Cascaded controller tuning is a multi-step iterative procedure that needs to be performed routinely upon maintenance and modification of mechanical systems. An automated data-driven method for cascaded controller tuning based on Bayesian optimization is proposed. The method is tested on a linear axis drive, modeled using a combination of first principles model and system identification. A custom cost function based on performance indicators derived from system data at different candidate configurations of controller parameters is modeled by a Gaussian process. It is further optimized by minimization of an acquisition function which serves as a sampling criterion to determine the subsequent candidate configuration for experimental trial and improvement of the cost model iteratively, until a minimum according to a termination criterion is found. This results in a data-efficient procedure that can be easily adapted to varying loads or mechanical modifications of the system. The method is further compared to several classical methods for auto-tuning, and demonstrates higher performance according to the defined data-driven performance indicators. The influence of the training data on a cost prior on the number of iterations required to reach optimum is studied, demonstrating the efficiency of the Bayesian optimization tuning method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源