论文标题

相关性措施,以帮助多个任务之间的构建块转移

Relatedness Measures to Aid the Transfer of Building Blocks among Multiple Tasks

论文作者

Nguyen, Trung B., Browne, Will N., Zhang, Mengjie

论文摘要

多任务学习是一种学习范式,可以同时处理多个不同的任务,并在其中传递知识。 XOF是一种使用基于树的程序来编码构建块(元功能)的学习分类器系统,它构建和收集具有丰富歧视性信息的功能,以在观察到的列表中用于分类任务。本文旨在通过使用观察到的列表来促进任务之间特征传输的自动化。我们假设分类任务的最佳判别特征具有其特征。因此,可以通过比较其最合适的模式来估算任意两个任务之间的相关性。我们提出了一个称为MXOF的多XOF系统,可以在XOF之间动态调整特征传输。该系统利用观察到的列表来估计任务相关性。此方法可以自动转移功能。在知识发现方面,相似估计提供了多个数据之间的有见地的关系。我们在各种情况下进行了MXOF,例如代表性的层次布尔问题,UCI动物园数据集中不同类别的分类以及无关的任务,以验证其自动知识转移的能力和估计与任务相关性的能力。结果表明,MXOF可以在多个任务之间合理地估计相关性,以通过动态特征传输来帮助学习绩效。

Multitask Learning is a learning paradigm that deals with multiple different tasks in parallel and transfers knowledge among them. XOF, a Learning Classifier System using tree-based programs to encode building blocks (meta-features), constructs and collects features with rich discriminative information for classification tasks in an observed list. This paper seeks to facilitate the automation of feature transferring in between tasks by utilising the observed list. We hypothesise that the best discriminative features of a classification task carry its characteristics. Therefore, the relatedness between any two tasks can be estimated by comparing their most appropriate patterns. We propose a multiple-XOF system, called mXOF, that can dynamically adapt feature transfer among XOFs. This system utilises the observed list to estimate the task relatedness. This method enables the automation of transferring features. In terms of knowledge discovery, the resemblance estimation provides insightful relations among multiple data. We experimented mXOF on various scenarios, e.g. representative Hierarchical Boolean problems, classification of distinct classes in the UCI Zoo dataset, and unrelated tasks, to validate its abilities of automatic knowledge-transfer and estimating task relatedness. Results show that mXOF can estimate the relatedness reasonably between multiple tasks to aid the learning performance with the dynamic feature transferring.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源