论文标题

层次深度卷积神经网络,用于在组织病理学图像上胃肠道疾病的多类诊断

Hierarchical Deep Convolutional Neural Networks for Multi-category Diagnosis of Gastrointestinal Disorders on Histopathological Images

论文作者

Sali, Rasoul, Adewole, Sodiq, Ehsan, Lubaina, Denson, Lee A., Kelly, Paul, Amadi, Beatrice C., Holtz, Lori, Ali, Syed Asad, Moore, Sean R., Syed, Sana, Brown, Donald E.

论文摘要

深度卷积神经网络(CNN)已成功完成了各种计算机视觉任务,包括图像分类。应用的特定领域在于在基于组织的胃肠道(GI)疾病的基于组织诊断的模式识别的数字病理学。该领域可以利用CNN将组织病理学图像转化为精确的诊断。这是具有挑战性的,因为这些复杂的活检是异质的,需要多个评估。这主要是由于胃肠道不同部分的结构相似性以及不同肠道疾病之间的共同特征。通过假定所有类别(肠道及其疾病的一部分)的平面模型来解决这个问题。由于分层模型将分类误差限制为每个子类,因此它导致比平面模型更具信息性的模型。在本文中,我们建议将来自胃肠道不同部分的活检图像的分层分类以及每个部位的接受性疾病。我们将一个类层次结构嵌入了普通的vggnet中,以利用其层的层次结构。使用来自373个整个幻灯片图像的独立图像贴片来评估所提出的模型。结果表明,分层模型可以比使用组织病理学图像对GI疾病的多类模型获得更好的结果。

Deep convolutional neural networks(CNNs) have been successful for a wide range of computer vision tasks, including image classification. A specific area of the application lies in digital pathology for pattern recognition in the tissue-based diagnosis of gastrointestinal(GI) diseases. This domain can utilize CNNs to translate histopathological images into precise diagnostics. This is challenging since these complex biopsies are heterogeneous and require multiple levels of assessment. This is mainly due to structural similarities in different parts of the GI tract and shared features among different gut diseases. Addressing this problem with a flat model that assumes all classes (parts of the gut and their diseases) are equally difficult to distinguish leads to an inadequate assessment of each class. Since the hierarchical model restricts classification error to each sub-class, it leads to a more informative model than a flat model. In this paper, we propose to apply the hierarchical classification of biopsy images from different parts of the GI tract and the receptive diseases within each. We embedded a class hierarchy into the plain VGGNet to take advantage of its layers' hierarchical structure. The proposed model was evaluated using an independent set of image patches from 373 whole slide images. The results indicate that the hierarchical model can achieve better results than the flat model for multi-category diagnosis of GI disorders using histopathological images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源